Prime Number

Algorithm

Step 1: Start

Step 2: Declare integer variables n, i, count

Step 3: Take input for number (n)

Step 4: Initialize count = 0

Step 5: Loop from 1 to n and check divisibility

Step 6: If count == 2, print "Prime" else print "Not Prime"

Step 7: End

Flowchart

graph TD; A([Start]) --> B[/Input n/]; B --> C[Initialize count = 0]; C --> D[Loop i = 1 to n]; D --> E{n % i == 0}; E -->|Yes| F[Increment count]; E -->|No| D; F --> D; D --> G{count == 2}; G -->|Yes| H[/"Prime Number"/]; G -->|No| I[/"Not a Prime Number"/]; H --> J([End]); I --> J; %% Define styles classDef start fill:#00cc44,stroke:#006622,stroke-width:2px,color:#ffffff; classDef stop fill:#ff4444,stroke:#cc0000,stroke-width:2px,color:#ffffff; classDef input_output fill:#ffdd44,stroke:#cc9900,stroke-width:2px,color:#000000; classDef process fill:#4488ff,stroke:#0044cc,stroke-width:2px,color:#ffffff; classDef decision fill:#ff8844,stroke:#cc4400,stroke-width:2px,color:#ffffff; %% Apply styles class A start; class J stop; class B,H,I input_output; class C,D,F process; class E,G decision;

Program

#include<stdio.h>

int main() 
{
    int n, i, r, count = 0;
    printf("Enter a Number:");
    scanf("%d", &n);
    
    for(i = 1; i <= n; i++)
    {
        r = n % i;
        if(r == 0)
        {
            count++;
        }
    }
    
    if(count == 2)
    {
        printf("\n%d is a Prime Number", n);
    }
    else
    {
        printf("\n%d is Not a Prime Number", n);
    }
    
    return 0;
}

Test Cases
Input: 7
Output: 7 is a Prime Number

Input: 10
Output: 10 is Not a Prime Number